Một số tìm hiểu tiếp theo về bổ túc xác suất : Luận văn ThS. Toán học: 60 46 01 06
Bổ túc xác suất là một quá trình chuyển tiếp từ các khái niệm xác suất cơ bản; cùng lý thuyết độ đo để xây dựng lý thuyết xác suất hiện đại thông qua giải tích ngẫu nhiên. Với các khái niệm cơ bản như Lý thuyết Martingale, Xích Markov, Di động ngẫu nhiên, Quá trình ngẫu nhiên liên
tục, Quá trình Wiener,...làm cơ sở để nghiên cứu tiếp về quá trình ngẫu nhiên, phương trình vi phân ngẫu nhiên và tiếp cận các ứng dụng quan trọng của lý thuyết xác suất như trong toán tài chính, phân tích chuỗi thời gian, lý thuyết dự báo,...
tục, Quá trình Wiener,...làm cơ sở để nghiên cứu tiếp về quá trình ngẫu nhiên, phương trình vi phân ngẫu nhiên và tiếp cận các ứng dụng quan trọng của lý thuyết xác suất như trong toán tài chính, phân tích chuỗi thời gian, lý thuyết dự báo,...
Title: | Một số tìm hiểu tiếp theo về bổ túc xác suất : Luận văn ThS. Toán học: 60 46 01 06 |
Authors: | Phan, Viết Thư, Người hướng dẫn Nguyễn, Thị Dung |
Keywords: | Toán học Lý thuyết xác suất Quán trình ngẫu nhiên |
Issue Date: | 2014 |
Publisher: | ĐHKHTN |
Abstract: | 67 tr. + CD-ROM + Tóm tắt Luận văn ThS. Lý thuyết xác suất và thống kê toán học -- Trường Đại học Khoa học Tự nhiên. Đại học Quốc gia Hà Nội, 2014 Electronic Resources |
URI: | http://repository.vnu.edu.vn/handle/VNU_123/37352 |
Appears in Collections: | HUS - Master Theses |
Nhận xét
Đăng nhận xét